Proof of the Minimax Theorem

نویسنده

  • Michael A. Goodrich
چکیده

Formalization of a 2 Person Zero-Sum Game 1. There are two players, P1 and P2. 2. P1 has a set A = {a1, a2, . . . , am} of m pure strategies (or actions). 3. P2 has a set B = {b1, b2, . . . , bn} of n pure strategies (or actions). 4. Each player has a utility for each (ai, bj) pair of actions. The utility for P1 is denoted U1(ai, bj) and the utility for P2 is denoted U2(ai, bj). Since this is a zero-sum game, U1(ai, bj) = −U2(ai, bj) for all i and j. To minimize the number of subscripts we will carry around, let M(ai, bj) = U1(ai, bj) denote the mutual utility for the game.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions

This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

The level set method of Joó and its use in minimax theory

In this paper we discuss the level set method of Joó and how to use it to give an elementary proof of the well-known Sion's minimax result. Although this proof technique is initiated by Joó and based on the intersection of upper level sets and a clever use of the topological notion of connectedness it is not very well known and accessible for researchers in optimization. At the same time we sim...

متن کامل

The Basic Theorem and its Consequences

Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...

متن کامل

Another proof of Banaschewski's surjection theorem

We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...

متن کامل

A very complicated proof of the minimax theorem

The justly celebrated von Neumann minimax theorem has many proofs. Here I reproduce the most complex one I am aware of. This provides a fine didactic example for many courses in convex analysis or functional analysis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007